您好、欢迎来到现金彩票网!
当前位置:湖南福彩网 > 分划 >

戴德金切割定理(实数定义)

发布时间:2019-10-02 23:59 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  在解析函数中,对实数定义大意是,先从自然数出发定义正有理数,然后通过无穷多个有理数的集合来定义实数;现在通常所采用的是戴德金和康托的构造方法。戴德金方法称为戴德金分割,是将有理数的集合分成两个非空不相交的子集A与B,使得A中的每一个元素小于B中的每一个元素。戴德金把这种划分定义为有理数的一个分割,记为(A,B)。因为不存在有理数X使得X的平方等于2,戴德金说,考虑一个不是由有理数产生的分割(A,B)时,就得到一个新数,即无理数a,这个数是由分割(A,B)完全确定的。因此,戴德金就把一切实数组成的集合R定义为有理数集的一切分割,而一个实数a就是一个分割(A,B)。在这一定义中,由一个给定的有理数r产生的两个实质上等价的分割被看成是同一的。

http://hostalblau.com/fenhua/661.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有